
!
!
!
!
!
!
!
!
!
!
!
!
!

GPUs!and!Lattice!QCD!
!
!

A!thesis!submitted!in!partial!fulfillment!of!the!requirements!for!the!degree!of!
Bachelor!of!Science!degree!in!Physics!from!the!College!of!William!and!Mary!

!
by!
!

Aaron!Dufour!
!
!

Advisor:!William!Detmold!
!

Senior!Research!Coordinator:!Henry!Krakauer!
!
!
!

Date:!May!2012!

Introduction

The goal of this project is to perform Lattice QCD calculations on GPUs. In

particular, we wish to decrease the cost of finding suitable sets of paths, via the

Monte Carlo method, for approximating the path integral.

This project began with an application of these techniques applied to a

much simpler problem, the one-dimensional quantum harmonic oscillator. This

problem acted as a stepping stone to the ultimate goal by using the Monte Carlo

technique without the complications of QCD, which include multiple dimensions

and more complicated field variables.

Quantum chromodynamics, or QCD, is the theory governing the interactions

of quarks via gluons. Lattice QCD is a technique for numerically investigating

systems, using the rules of QCD. This technique is motivated by the fact that

in QCD, the force-carrying particles can interact, thus greatly increasing the

complexity as compared to QED. Due to the greater complexity, numerical

techniques are required.

We will show an application of a simple form of Lattice QCD, in which we

only consider the gluon action. This simplified version, called Yang-Mills SU(3)

theory, is preferable because changing the field only causes local changes in the

gluon action, making it computationally cheaper. Since we use only a single

GPU, this decrease in computational complexity is necessary.

One-Dimensional Lattice QM

For our one-dimensional quantum mechanics problem, assume we wish to eval-

uate the evolution of a position from time ti to time tf . We can use a sum over

all possible paths:

1

hx(tf)|e�Ĥ(tf�ti)|x(ti)i =
Z

Dx(t)e�S[x]

Here, S[x] is the classical action. In order to calculate the sum over all paths,

we represent an approximation of a path from x(ti) to x(tf) as a vector of x(t)

at regular intervals a, i.e.

x(ti + ja) for j = 0, 1, ..., N

where tf = ti+aN . Now that x(t) has been approximated as a vector of discrete

points, we can turn the integral over all paths into an integral over all possible

values of each point (using the notation x(tn) = xn, for convenience):

Z
Dx(t)e�S[x] ! A

Z 1

�1
dx1dx2...dxN�1e

�S[x]

We do not integrate over x0 or xN because they are to be held fixed as boundary

conditions. For our purposes, we don’t need to worry about the normalization

factor A.

Now, we need a way of approximating the classical action for a given path.

The classical action is:

S[x] =

Z tf

ti

✓
m · ẋ(t)2

2
+ V (x(t))

◆

First, we find an approximation for the interval [tj , tj+1]. The obvious ap-

proximations are the trapezoidal sum for the integral over V (x) and the finite

di↵erence approximation for ẋ:

m

2

✓
xj+1 � xj

a

◆2

+
1

2
(V (xj) + V (xj+1))

Summing over these, we get our lattice action:

2

Slat[x] =
N�1X

j=0

✓
m

2

✓
xj+1 � xj

a

◆
+

1

2
(V (xj) + V (xj+1))

◆

Finally, we have an equation for the propagator that can be evaluated to within

a constant by numerical methods:

hx(tf)|e�Ĥ(tf�ti)|x(ti)i = A

Z
dx1dx2...dxN�1e

�Slat[x]

We wish to find the di↵erence between energy levels, so we need to evaluate

an excited state. In order to do this, we must interrupt the propagation of the

groundstate with construction/destruction operators. In this case, we use the x̃

operator, so we are evaluating the odd-parity states:

hhx(t2)x(t1)ii =
R
dxhx|e�Ĥ(tf�t2)

x̃e

�Ĥ(t2�t1)
x̃e

�Ĥ(t1�ti)|xi
R
dxhx|e�Ĥ(tf�ti)|xi

We can rewrite the numerator and denominator as sums over energy levels by

evaluating hx|e�Ĥ(tf�t2) =
P

n e
�En(tf�t2)hEn|, etc.:

hhx(t2)x(t1)ii =
P

n,m e

�En(tf�t2)hEn|x̃e�Ĥ(t2�t1)
x̃|Emie�Em(t1�ti)

P
n e

�En(tf�ti)

By rearranging, we arrive at:

hhx(t2)x(t1)ii =
P

n,m e

�(Entf�Emti)hEn|x̃e�Ĥt�(Emt1�Ent2)
x̃|EniP

n e
�En(tf�ti)

We can take tf � ti � t2 � t1 to eliminate the sums:

hhx(t2)x(t1)ii ⇡
e

�E0T hE0|x̃e�(Ĥ�E0)t
x̃|E0i

e

�E0T
= hE0|x̃e�(Ĥ�E0)t

x̃|E0i

3

Quantum Harmonic Oscillator

For the harmonic oscillator, we have the potential V (x) = x2

2 , so our lattice

action is:

Slat[x] =
N�1X

j=0

m

2

✓
xj+1 � xj

a

◆
+

1

2

x

2
j

2
+

x

2
j+1

2

!!

In this case our approximation of hhx(t2)x(t1)ii,

hE0|x̃e�(Ĥ�E0)t
x̃|E0i = 0

because x̃ switches parity, so E0 cannot propagate. Now, we can assume t is

large (but still much smaller than T) to get:

G(t) = hhx(t2)x(t1)ii ⇡ |hE0|x̃|E0i|2 · e�(E1�E0)t

Then, we can calculate the di↵erence between the lowest two energy levels by:

log

✓
G(t)

G(t+ a)

◆
⇡ a(E1 � E0)

Quantum Harmonic Oscillator Results

In figures 1 and 2, we see results for the quantum harmonic oscillator with

a = 1
4 , T = 10. For the quantum harmonic oscillator, we see results about

what we expect for approximations of E1 � E0 when interrupting with the x

operator. When the interruption is with the x

3 operator, we see contamination

in the expected trend (figure 2).

4

Figure 1: The graph of log
⇣

G(t)
G(t+a)

⌘
· 1
a , approximating E1 �E0. The expected

value of 1 can be seen. We look at t 2 [0, 3] because we assumed t ⌧ T .

Figure 2: The graph of log
⇣

G(t)
G(t+a)

⌘
· 1
a . The e↵ect of higher energy levels can

be seen contaminating the expected small-t trend of E1 � E0 = 1.

5

Discretization of the Gluon Action

The continuum action in terms of the field strength tensor is

S =

Z
d

4
x

1

2

X

µ,⌫

TrF

2
µ⌫(x)

where the field strength tensor is a traceless 3⇥3 Hermitian matrix, written

in terms of the gauge field as

Fµ⌫ = @µA⌫ � @⌫Aµ + ig[Aµ, A⌫]

An important characteristic of this theory is its invariance under SU(3) gauge

transformations. When discretizing the theory, it is important to keep exact

gauge invariance.

To this end, we discretize the field by storing values for the links between

sites rather than for the sites themselves. The value at a link is the integral

between its ends. For the link between x and x+ aµ, the link value is:

Uµ(x) ⌘ Pexp(�i

Z x+aµ

x

gA · dy)

where P path-orders the integral the As along the integration path.

Using Uµ rather than Aµ confers the advantage of allowing for exact gauge

invariance on the lattice. Where the gauge transformation of Fµ⌫ by the x-

dependent SU3 matrix ⌦(x) is

Fµ⌫ ! ⌦(x)Fµ⌫⌦(x)
†

the Uµ variables are SU3 matrices that transform as

Uµ(x) ! ⌦(x)Uµ(x)⌦(x+ aµ)†

6

A link variable Uµ(x) is shown as a directed line from x to x + aµ, which

represents the path of the integral:

Figure 3: Uµ(x) on the lattice, represented by points.

The conjugate matrix U

†
µ(x) is shown as a directed line from x+ aµ to x:

Figure 4: U †
µ(x)

The paths that we are interested in are closed paths called Wilson loops.

They are defined as

W (C) ⌘ 1

3
TrPexp(�i

I

C

gA · dy)

for any closed path C made up of lattice links. A simple loop, the 2a ⇥ a

rectangle shown in figure 5, would be calculated by

W (C) =
1

3
Tr(Uµ(x)Uµ(x+ aµ)U⌫(x+ 2aµ)U†

µ(x+ a⌫ + aµ)U†
µ(x+ a⌫)U †

⌫ (x))

As a product of link variables, Wilson loops are invariant under gauge trans-

formations.

Now we need the lattice Lagrangian in terms of link variables. As discussed

previously, we are looking for a Lagrangian that is gauge invariant and local,

7

Figure 5: The 2⇥ 1 Wilson loop at x.

which points us towards small Wilson loops. We also require that the Lagrangian

be symmetric with respect to changes of axes, which is the subset of Lorentz

invariance that remains on the lattice. The smallest Wilson loop, called the

”plaquette operator”, is the Wilson loop around an a⇥ a square at x:

Pµ⌫ =
1

3
Re(Tr(Uµ(x)U⌫(x+ aµ)U†

µ(x+ a⌫)U†
µ(x))

Through examination of the behavior of Pµ⌫ , it can be shown that the gluon

action can be approximated in terms of Pµ⌫ by

S = �

X

x,µ>⌫

(1� Pµ⌫(x))

where � determines the lattice spacing. This is equivalent to the continuum

action given earlier, with correction of order a2.

Monte Carlo Integration

In order to evaluate QCD quantities, we need a set of lattices such that the

probability of a particular path being in the set is e

�S , for the action given

above. This set of lattices can then be used to evalute the partition function:

8

ZT = C

Z
dx0 · · · dxN⌧�1e

�S

By interpreting e

�S as the probability that a particular configuration is in the

set, we can approximate the partition function with an unweighted average.

Observables can be calculated by taking integrals over each gluon configuration

in the set, and again using an unweighted average.

We get this set of lattice configurations via the Monte Carlo method.

To get lattice n + 1 from lattice n, we update the lattice randomly, proba-

bilistically keeping changes based on how they a↵ect the action. To update a

single link variable, we multiply it by a random SU3 matrix. Then, we keep

the change if it decreases the action. If it increases the action, we only keep it

with probability e

��S . The goal is for half of these updates to be kept. A single

update of the lattice is when the update procedure is applied to each link.

We initially seed the lattice by setting each link equal to I3. Then, we do

the update procedure a number of times to eliminate the e↵ect of our choice for

initial values, or ”thermalize the lattice”. Lepage suggests that 5 · Ncor times

should be enough.

Next, we perform Ncor updates, and keep the resulting lattice. By repeating

this procedure, we get as many lattices as we need. The value of Ncor should

be large enough to prevent consecutive saved lattices from being statistically

related. For our purpose, we use the value Ncor = 50.

Random SU3 Matrices

This algorithm relies on being able to generate random SU3 matrices. It is also

useful to be able to tune these matrices to be further from or closer to I3 so

that we can get the desired update acceptance rate (Lepage suggests that 50%

9

is ideal).

Matrix Generation

In order to generate these matrices, we begin by generating SU2 matrices.

Again, we need to be able to tune the distribution, which we do by defining

a variable ✏. To get our results, we used the value ✏ = 0.2.

First, we generate 3 numbers ri in the range [�0.5, 0.5] to define the vector

r. We transform these into the vector x by:

x = ✏ · r

|r|

which normalizes the vector and then takes into account the tuning variable.

We also define x0 =
p
1� ✏

2, giving us a unit 4-vector. Finally, we use x as

coe�cients for the basis matrices to get our matrix:

U =
X

i

xi · ui

where the basis matrices are

u0 =

0

B@
1 0

0 1

1

CA , u1 =

0

B@
0 i

i 0

1

CA

u2 =

0

B@
0 -1

1 0

1

CA , u3 =

0

B@
i 0

0 -i

1

CA

To generate an SU3 matrix, we first generate 3 SU2 matrices r, s, and t by

the method given above. Then, we turn these into SU3 matrices:

10

R =

0

BBBB@

r11 r12 0

r21 r22 0

0 0 1

1

CCCCA
, S =

0

BBBB@

s11 0 s12

0 1 0

s21 0 s22

1

CCCCA
, T =

0

BBBB@

1 0 0

0 t11 t12

0 t21 t22

1

CCCCA

Finally, our result SU3 matrix is calculated by

X = R · S · T

Matrix Testing

To ensure that these matrices have the properties we wanted, we perform a

few tests. Most importantly, we check that they are in SU3. Thus, for a given

matrix X, we must check that the following properties hold:

X

†
X = I3, det(X) = 1

By generating 100000 random matrices, we can see the error distribution.

Figure 6 shows the errors for the unitary matrix equation, and figure 7 shows

the errors in the determinant. We get a maximum error of about 6 parts in 1016,

so the matrices should be close enough to special unitary for our purposes. The

strange distribution is likely an e↵ect of the fact that floating-point numbers are

not continuous, and that the smallest delta that can be represented is around

1016.

Next, we want to make sure our matrices are covering the full range of SU3.

We do this by decomposing each matrix into coe�cients of the basis matrices,

and looking at the distribution. We expect that the coe�cients to the Gell-

Mann matrices have similar distributions. It is also possible to check that ✏

tunes the variance of these coe�cients.

11

Figure 6: The distributions of the magnitude of each term in X

†
X � I3.

Figure 7: The distribution of the magnitudes of det(X)� 1.

The basis matrices for SU3 are the following:

12

�0 = I3,�1 =

0

BBBB@

0 1 0

1 0 0

0 0 0

1

CCCCA
,�2 =

0

BBBB@

0 �i 0

i 0 0

0 0 0

1

CCCCA

�3 =

0

BBBB@

1 0 0

0 �1 0

0 0 0

1

CCCCA
,�4 =

0

BBBB@

0 0 1

0 0 0

1 0 0

1

CCCCA
,�5 =

0

BBBB@

0 0 �i

0 0 0

i 0 0

1

CCCCA

�6 =

0

BBBB@

0 0 0

0 0 1

0 1 0

1

CCCCA
,�7 =

0

BBBB@

0 0 0

0 0 �i

0 i 0

1

CCCCA
,�8 =

1p
3

0

BBBB@

1 0 0

0 1 0

0 0 �2

1

CCCCA

where �i for i = 1..8 are the Gell-Mann matrices. To decompose a matrix

into a summation X =
P

i xi�i, we use xi = Tr(�i · X). The results for this

decomposition on a set of 100000 matrices is shown. In figures 8 and 9, we

have the imaginary and real components, respectively, of the xis for ✏ = 0.5. As

expected, the coe�cients of the Gell-Mann matrices are very similar. In figures

10 and 11, we have the imaginary and real components, respectively, of the xis

for ✏ = 0.3. Here, we can see that decreasing ✏ decreased the variances. We also

see that all of the matrices have a large x0, corresponding to the matrices being

close to I3, which we need to ensure that the changes to the link variables are

small.

Static Quark Potential

We examine the potential between a static quark and a static antiquark because

it is a fairly simple, but meaningful, calculation. The potential should be linear

with r, the distance between the particles, at long distances and should go like

� 1
r2 at short distances.

13

Figure 8: The distribution of the coe�cients imaginary components, with ✏ =
0.5.

Figure 9: The distribution of the coe�cients real components, with ✏ = 0.5.

14

Figure 10: The distribution of the coe�cients imaginary components, with ✏ =
0.3.

Figure 11: The distribution of the coe�cients real components, with ✏ = 0.3.

15

From Lepage, the propagator for a nonrelativistic quark with mass M ! 1

is

G(x, t) =


P exp (�i

Z t

0
gA0(x, t)dt)

�†
�

3(x)

On the lattice, the propagator becomes

G(x, t) = U

†
t (x, t� a)U†

t (x, t� 2a) · · ·U †
t (x, 0)

The propagator for an antiquark is G†. Thus, the static potential V (r) can

be found using the r⇥tWilson loops, W (r, t). Such a Wilson loop corresponds to

taking a quark and an antiquark and pulling them apart a distance r, allowing

them to propagate for time t, and then annihalating them. For large t, we

approximate

W (r, t) ⇡ Ce

�V (r)t

To calculate V (r), we compute W (r, t) for successive values of t, getting

W (r, t)

W (r, t+ a)
⇡ aV (r)

which is done using W values averaged over the configurations in our set.

Error Prediction

To predict the error, we use a resampling method called ”bootstrapping”. For

each lattice configuration that we saved, we calculate W (r, t) over the range of

r and t that we are interested in. Then, for each set of final W (r, t) values, we

take an unweighted average over a random sampling (with duplication allowed)

of our initial set. With enough resamplings, we can calculate the mean and

16

standard deviation.

Results

The change from a CPU version of the Monte Carlo procedure to a GPU version

gave an increase in speed of around 150 times. This allowed us to increase from

3-dimensions to 4-dimensions, as well as double the number of sites in each

dimension, with almost no loss in computation time. It is worth noting that

the GPU version used is very rough, and has room for improvement. Further,

because the GPU version is already parallel, it would be possible to use multiple

GPUs without a significant change in the algorithm.

A check of the average plaquette values for a lattice generated by this GPU

program agrees with the value given by Lepage, indicating that we are generat-

ing valid configurations. However, the GPU version of the Wilson loop function

gives bad results, indicating that it is faulty. Since the CPU version of the

Wilson loop function is too slow on the large lattices generated by the GPU,

we examine a much smaller lattice - 4 sites in each of the 3 spatial direction

and 12 sites in the time direction. Figure 12 shows the plot of W (r, t) against

t with a fixed r. We see an exponential decay as t increases, as expected from

the equation for W (r, t) above.

Conclusion

We’ve shown how to use the Monte Carlo method to perform some basic calcula-

tions in QCD as well as on the Quantum Harmonic Oscillator system. Although

no physical QCD quantities were calculated, our calculations of Wilson loops

shows that W decays exponentially with t.

A method for examining the output of a random SU(3) matrix generator is

17

Figure 12: The graph of W (r, t), r = 3a on a small lattice. The t axis is labeled
in units of a. Error bars indicate one standard deviation, as determined by the
bootstrapping method.

shown, as well as results from this method, which agreed qualitatively with our

expectations.

18

Bibliography

Gattringer C., Lang C.B., Quantum Chromodynamics on the Lattice: An Intro-

ductory Presentation, Lect. Notes Phys. 788 (Springer, Berling Heidelberg

2010).

G.P. Lepage, Lattice QCD for Novices, arXiv:hep-lat/0506036.

19

